New equations for maximal curves

Giovanni Zini
(joint work with Massimo Giulietti and Luciane Quoos)

University of Florence

Workshop on algebraic curves and function fields over a finite fields
Perugia, 2-7 February 2015
- $K = \overline{F}_q$
Notation

- $\mathbb{K} = \overline{\mathbb{F}}_q$

- $\mathcal{X} \subseteq \mathbb{P}^r(\mathbb{K})$ projective, geometrically irreducible algebraic curve defined over \mathbb{F}_q
Notation

- $K = \overline{F}_q$

- $\mathcal{X} \subseteq \mathbb{P}^r(K)$ projective, geometrically irreducible algebraic curve defined over F_q

- $g = g(\mathcal{X})$ genus of \mathcal{X}
Notation

- $K = \overline{F}_q$

- $\mathcal{X} \subseteq \mathbb{P}^r(K)$ projective, geometrically irreducible algebraic curve defined over \mathbb{F}_q

- $g = g(\mathcal{X})$ genus of \mathcal{X}

- $\mathcal{X}(\mathbb{F}_q)$ set of \mathbb{F}_q-rational places of \mathcal{X}

 If \mathcal{X} is non-singular, we can identify places and points of \mathcal{X}, and

 $$\mathcal{X}(\mathbb{F}_q) = \mathcal{X} \cap \text{PG}(r, q)$$
Maximal curves

Theorem (Hasse-Weil bound)

Let \mathcal{X} be a curve defined over \mathbb{F}_q. Then

$$||\mathcal{X}(\mathbb{F}_q)| - (q + 1)|| \leq 2g\sqrt{q}$$
Maximal curves

Theorem (Hasse-Weil bound)

Let X be a curve defined over \mathbb{F}_q. Then

$$\left| |X(\mathbb{F}_q)| - (q + 1) \right| \leq 2g\sqrt{q}$$

Definition

X is \mathbb{F}_{q^2}-maximal if

$$|X(\mathbb{F}_{q^2})| = q^2 + 1 + 2gq$$
Maximal curves

Theorem (Hasse-Weil bound)

Let \(\mathcal{X} \) be a curve defined over \(\mathbb{F}_q \). Then

\[
||\mathcal{X}(\mathbb{F}_q)| - (q + 1)| \leq 2g\sqrt{q}
\]

Definition

\(\mathcal{X} \) is \(\mathbb{F}_{q^2} \)-maximal if \(|\mathcal{X}(\mathbb{F}_{q^2})| = q^2 + 1 + 2gq \)

Example

Hermitian curve:

\[
\mathcal{H}_q : X^q + X = Y^{q+1}, \quad q = p^h
\]

\[
g = q(q - 1)/2 \quad |\mathcal{H}_q(\mathbb{F}_{q^2})| = q^3 + 1
\]
Riemann Hypothesis for curves over finite fields

- Riemann zeta function:

\[\zeta(s) = \sum_{n=1}^{\infty} n^{-s} \]
Riemann Hypothesis for curves over finite fields

- Riemann zeta function:
 \[\zeta(s) = \sum_{n=1}^{\infty} n^{-s} \]

- Zeta function of the curve \(X \) defined over \(\mathbb{F}_q \) with genus \(g \):
 \[\zeta(X, s) = \sum_D N(D)^{-s} \]
 sum over all effective \(\mathbb{F}_q \)-rational divisors \(D \), \(N(D) = q^{\deg(D)} \)
Riemann Hypothesis for curves over finite fields

- Riemann zeta function:
 \[\zeta(s) = \sum_{n=1}^{\infty} n^{-s} \]

- Zeta function of the curve \(\mathcal{X} \) defined over \(\mathbb{F}_q \) with genus \(g \):
 \[\zeta(\mathcal{X}, s) = \sum_{D} N(D)^{-s} \]
 sum over all effective \(\mathbb{F}_q \)-rational divisors \(D \), \(N(D) = q^{\deg(D)} \)
 \(\zeta(\mathcal{X}, s) \) defines a meromorphic function over \(\mathbb{C} \)
Riemann Hypothesis for curves over finite fields

- Riemann zeta function:
 \[\zeta(s) = \sum_{n=1}^{\infty} n^{-s} \]

- Zeta function of the curve \(\mathcal{X} \) defined over \(\mathbb{F}_q \) with genus \(g \):
 \[\zeta(\mathcal{X}, s) = \sum_D N(D)^{-s} \]
 sum over all effective \(\mathbb{F}_q \)-rational divisors \(D \), \(N(D) = q^\deg(D) \)
 \(\zeta(\mathcal{X}, s) \) defines a meromorphic function over \(\mathbb{C} \)
 - Let \(t = q^{-s} \), then
 \[\zeta(\mathcal{X}, s) = Z(\mathcal{X}, t) = \frac{L(\mathcal{X}, q)(t)}{(1 - t)(1 - qt)} \]
 where \(L(\mathcal{X}, q)(t) \) is the \(L \)-polynomial of \(\mathcal{X} \)
Riemann Hypothesis for curves over finite fields

Theorem (Hasse-Weil)

- \(L(\mathcal{X}, q)(t) \in \mathbb{Z}[t], \ \text{deg} L(\mathcal{X}, q) = 2g \)
Riemann Hypothesis for curves over finite fields

Theorem (Hasse-Weil)

- $L(X, q)(t) \in \mathbb{Z}[t]$, $\deg L(X, q) = 2g$
- $L(X, q)$ has constant term 1 and leading coefficient q^g
Riemann Hypothesis for curves over finite fields

Theorem (Hasse-Weil)

- $L(\mathcal{X}, q)(t) \in \mathbb{Z}[t]$, $\deg L(\mathcal{X}, q) = 2g$
- $L(\mathcal{X}, q)$ has constant term 1 and leading coefficient q^g

If $L(\mathcal{X}, q)(t) = \prod_{i=1}^{2g}(1 - \omega_i t)$, then

- $\omega_i \cdot \omega_i + g = q$ for all $i = 1, \ldots, 2g$
- $|\omega_i| = \sqrt{q}$ for all $i = 1, \ldots, 2g$
- $\Re(s) = \frac{1}{2}$
Riemann Hypothesis for curves over finite fields

Theorem (Hasse-Weil)

- \(L(\mathcal{X}, q)(t) \in \mathbb{Z}[t], \deg L(\mathcal{X}, q) = 2g \)
- \(L(\mathcal{X}, q) \) has constant term 1 and leading coefficient \(q^g \)

 If \(L(\mathcal{X}, q)(t) = \prod_{i=1}^{2g} (1 - \omega_i t) \), then

- \(|\mathcal{X}(\mathbb{F}_{q^m})| = q^m + 1 - (\omega_1^m + \ldots + \omega_{2g}^m) \) for all \(m \geq 1 \)
- up to reordering, \(\omega_i \cdot \omega_{i+g} = q \) for all \(i = 1, \ldots, g \)
Theorem (Hasse-Weil)

- $L(X, q)(t) \in \mathbb{Z}[t]$, $\deg L(X, q) = 2g$
- $L(X, q)$ has constant term 1 and leading coefficient q^g
- If $L(X, q)(t) = \prod_{i=1}^{2g} (1 - \omega_i t)$, then
- $|X(F_{q^m})| = q^m + 1 - (\omega_1^m + \ldots + \omega_{2g}^m)$ for all $m \geq 1$
- up to reordering, $\omega_i \cdot \omega_{i+g} = q$ for all $i = 1, \ldots, g$
- $|\omega_i| = \sqrt{q}$ for all $i = 1, \ldots, 2g$, hence $\Re(s) = \frac{1}{2}$
Riemann Hypothesis for curves over finite fields

Theorem (Hasse-Weil)

1. $L(X, q)(t) \in \mathbb{Z}[t]$, $\text{deg} L(X, q) = 2g$
2. $L(X, q)$ has constant term 1 and leading coefficient q^g
 - If $L(X, q)(t) = \prod_{i=1}^{2g}(1 - \omega_i t)$, then
3. $|X(\mathbb{F}_{q^m})| = q^m + 1 - (\omega_1^m + \ldots + \omega_{2g}^m)$ for all $m \geq 1$
4. up to reordering, $\omega_i \cdot \omega_{i+g} = q$ for all $i = 1, \ldots, g$
5. $|\omega_i| = \sqrt{q}$ for all $i = 1, \ldots, 2g$, hence $\Re(s) = \frac{1}{2}$

This is the Riemann Hypothesis for curves over finite fields
Riemann Hypothesis for curves over finite fields

Theorem (Hasse-Weil)

- \(L(\mathcal{X}, q)(t) \in \mathbb{Z}[t], \deg L(\mathcal{X}, q) = 2g \)
- \(L(\mathcal{X}, q) \) has constant term 1 and leading coefficient \(q^g \)
 - If \(L(\mathcal{X}, q)(t) = \prod_{i=1}^{2g} (1 - \omega_i t) \), then
 - \(|\mathcal{X}(\mathbb{F}_{q^m})| = q^m + 1 - (\omega_1^m + \ldots + \omega_{2g}^m) \) for all \(m \geq 1 \)
 - up to reordering, \(\omega_i \cdot \omega_{i+g} = q \) for all \(i = 1, \ldots, g \)
 - \(|\omega_i| = \sqrt{q} \) for all \(i = 1, \ldots, 2g \), hence \(\Re(s) = \frac{1}{2} \)

This is the Riemann Hypothesis for curves over finite fields

The Hasse-Weil bound follows as a corollary
Riemann Hypothesis for curves over finite fields

Theorem (Hasse-Weil)

- \(L(\mathcal{X}, q)(t) \in \mathbb{Z}[t], \deg L(\mathcal{X}, q) = 2g \)
- \(L(\mathcal{X}, q) \) has constant term 1 and leading coefficient \(q^g \)

If \(L(\mathcal{X}, q)(t) = \prod_{i=1}^{2g} (1 - \omega_i t) \), then

\[
|\mathcal{X}(\mathbb{F}_{q^m})| = q^m + 1 - (\omega_1^m + \ldots + \omega_{2g}^m) \quad \text{for all } m \geq 1
\]

up to reordering, \(\omega_i \cdot \omega_{i+g} = q \) for all \(i = 1, \ldots, g \)

- \(|\omega_i| = \sqrt{q} \) for all \(i = 1, \ldots, 2g \), hence \(\Re(s) = \frac{1}{2} \)

This is the Riemann Hypothesis for curves over finite fields

The Hasse-Weil bound follows as a corollary

For maximal curves over \(\mathbb{F}_q \), \(\omega_i = -\sqrt{q} \) for all \(i = 1, \ldots, 2g \)
Application of maximal curves to AG codes

- $C [n, k, d]_q$-code associated to $X(\mathbb{F}_q)$
Application of maximal curves to AG codes

- $C [n, k, d]_q$-code associated to $\mathcal{X}(\mathbb{F}_q)$
- $\delta = n - k + 1 - d$ Singleton defect
Application of maximal curves to AG codes

- $C [n, k, d]_q$-code associated to $\mathcal{X}(\mathbb{F}_q)$
- $\delta = n - k + 1 - d$ Singleton defect
- $\Delta = \delta / n$ relative Singleton defect
Application of maximal curves to AG codes

- $C \ [n, k, d]_q$-code associated to $X(\mathbb{F}_q)$
- $\delta = n - k + 1 - d$ Singleton defect
- $\Delta = \delta/n$ relative Singleton defect
- By Riemann-Roch Theorem, if $\deg(X) > 2g - 2$, then
 \[\Delta \leq \frac{g(X)}{|X(\mathbb{F}_q)|} \]
Application of maximal curves to AG codes

- $C \ [n, k, d]_q$-code associated to $\mathcal{X}(\mathbb{F}_q)$
- $\delta = n - k + 1 - d$ Singleton defect
- $\Delta = \delta/n$ relative Singleton defect
- By Riemann-Roch Theorem, if $\deg(\mathcal{X}) > 2g - 2$, then
 \[\Delta \leq \frac{g(\mathcal{X})}{|\mathcal{X}(\mathbb{F}_q)|} \]

Good curves for AG codes: curves with many rational points with respect to their genus
Application of maximal curves to AG codes

- $C \ [n, k, d]_q$-code associated to $\mathcal{X}(\mathbb{F}_q)$
- $\delta = n - k + 1 - d$ Singleton defect
- $\Delta = \delta/n$ relative Singleton defect
- By Riemann-Roch Theorem, if $\deg(\mathcal{X}) > 2g - 2$, then

$$\Delta \leq \frac{g(\mathcal{X})}{|\mathcal{X}(\mathbb{F}_q)|}$$

Good curves for AG codes: curves with many rational points with respect to their genus, with explicit equations
Theorem (Serre, 1987)

If X is \mathbb{F}_q-maximal and $\phi : X \to Y$ is a non-constant morphism defined over \mathbb{F}_q, then Y is \mathbb{F}_q-maximal.
Coverings of curves

Theorem (Serre, 1987)

If X is \mathbb{F}_q-maximal and $\phi : X \to Y$ is a non-constant morphism defined over \mathbb{F}_q, then Y is \mathbb{F}_q-maximal.

Theorem

Let G be a finite group of \mathbb{F}_q-automorphisms of X, that is

$$G < \text{Aut}_{\mathbb{F}_q}(X) = \{ \phi : X \to X \mid \phi \text{ automorphism defined over } \mathbb{F}_q \}$$

Then the quotient curve X/G is \mathbb{F}_q-maximal.
\(\mathbb{F}_{q^2} \)-maximal curves not covered by \(\mathcal{H}_q \)

Theorem (Giulietti-Korchmáros 2009)

Let \(n \) be a power of a prime \(p \), \(q = n^3 \). The GK-curve

\[
\mathcal{Y}_n : \begin{cases}
Z \frac{n^3+1}{n+1} = Y^{n^2} - Y \\
X^n + X = Y^{n+1}
\end{cases}
\]

is \(\mathbb{F}_{q^2} \)-maximal. If \(q > 8 \), \(\mathcal{Y}_n \) is not \(\mathbb{F}_{q^2} \)-covered by \(\mathcal{H}_q \).
\(\mathbb{F}_{q^2} \)-maximal curves not covered by \(\mathcal{H}_q \)

Theorem (Giulietti-Korchmáros 2009)

If \(p \) is an \(n \)-th power of a prime, \(q = n^3 \). The GK-curve

\[
\mathcal{Y}_n: \begin{cases}
Z = \frac{n^3+1}{n+1} &= Y^{n^2} - Y \\
X^n + X &= Y^{n+1}
\end{cases}
\]

is \(\mathbb{F}_{q^2} \)-maximal. If \(q > 8 \), \(\mathcal{Y}_n \) is not \(\mathbb{F}_{q^2} \)-covered by \(\mathcal{H}_q \).

Generalized by Garcia-Gunerí-Stichtenoth:

\(\mathbb{F}_{q^2} \)-maximal curves not Galois-covered by \(\mathcal{H}_q \)

Guralnick-Malmskog-Pries: automorphism group of the GGS-curve
Automorphisms of \mathcal{Y}_n

$$|\text{Aut}(\mathcal{Y}_n)| = n^3(n^3 + 1)(n^2 - 1)(n^2 - n + 1) \sim 4g^2$$
Automorphisms of \mathcal{Y}_n

$$|\text{Aut}(\mathcal{Y}_n)| = n^3(n^3 + 1)(n^2 - 1)(n^2 - n + 1) \sim 4g^2$$

- $\text{Aut}(\mathcal{Y}_n)$ has a subgroup isomorphic to

$$SU(3, n) \times \mathbb{Z}_i,$$

$$i = \begin{cases}
 n^2 - n + 1, & \text{if } 3 \nmid n + 1 \\
 \frac{1}{3}(n^2 - n + 1), & \text{if } 3 \mid n + 1
\end{cases}$$
Automorphisms of \mathcal{Y}_n

$$\left| \text{Aut}(\mathcal{Y}_n) \right| = n^3(n^3 + 1)(n^2 - 1)(n^2 - n + 1) \sim 4g^2$$

- $\text{Aut}(\mathcal{Y}_n)$ has a subgroup isomorphic to $SU(3, n) \times \mathbb{Z}_i$, where
 $$i = \begin{cases}
 n^2 - n + 1, & \text{if } 3 \nmid n + 1 \\
 \frac{1}{3}(n^2 - n + 1), & \text{if } 3 \mid n + 1
 \end{cases}$$

- $\text{Aut}(\mathcal{Y}_n)$ has a central subgroup Λ of size $n^2 - n + 1$ such that $\text{Aut}(\mathcal{Y}_n)/\Lambda \cong \text{PGU}(3, n) = \text{Aut}(\mathcal{H}_n)$

and the action of $\text{Aut}(\mathcal{Y}_n)/\Lambda$ on the orbits of Λ is equivalent to that of $\text{PGU}(3, n)$ on \mathcal{H}_n
Quotient curves of \mathcal{Y}_n

Problem

Investigate quotient curves of \mathcal{Y}_n
Quotient curves of \mathcal{V}_n

Problem

Investigate quotient curves of \mathcal{V}_n

- Find automorphism groups of \mathcal{V}_n
- Find the genus of quotients of \mathcal{V}_n
Quotient curves of \mathcal{Y}_n

Problem

Investigate quotient curves of \mathcal{Y}_n

- Find automorphism groups of \mathcal{Y}_n
- Find the genus of quotients of \mathcal{Y}_n

(Fanali-Giulietti, 2012)
Quotient curves of \mathcal{Y}_n

Problem

Investigate quotient curves of \mathcal{Y}_n

- Find automorphism groups of \mathcal{Y}_n
- Find the genus of quotients of \mathcal{Y}_n

 (Fanali-Giulietti, 2012)
- Find explicit equations for quotients of \mathcal{Y}_n
- Are the quotients (Galois) covered by the Hermitian curve?
Problem

Investigate quotient curves of \(\mathcal{Y}_n \)

- Find automorphism groups of \(\mathcal{Y}_n \)
- Find the genus of quotients of \(\mathcal{Y}_n \)

 (Fanali-Giulietti, 2012)
- Find explicit equations for quotients of \(\mathcal{Y}_n \)
- Are the quotients (Galois) covered by the Hermitian curve?

 (Tafazolian - Teherán-Herrera - Torres, Bartoli - Speziali)
Quotient curves of \mathcal{Y}_n: examples

\[n = p^h, \quad b \mid h, \quad c^{n-1} = -1, \quad L \leq \text{Aut}(\mathcal{Y}_n)_{P_\infty}, \quad |L| = p^b \]

\[\mathcal{Y}_n/L : \begin{cases} cY^{n+1} = \sum_{i=0}^{h/b-1} X^{p^{ib}} \\ Z^{n^2 - n + 1} = Y^{n^2} - Y \end{cases} \]

If $n > p^{2b} + p^b$, then \mathcal{Y}_n/L is not covered by \mathcal{H}_{n^3}
Quotient curves of \mathcal{Y}_n: examples

$$n = p^h, \quad b \mid h, \quad c^{n-1} = -1, \quad L \leq \text{Aut}(\mathcal{Y}_n)_{P_\infty}, \quad |L| = p^b$$

$$\mathcal{Y}_n / L : \begin{cases} cY^{n+1} = \sum_{i=0}^{h/b-1} X^{p^{ib}} \\ Z^{n^2-n+1} = Y^{n^2} - Y \end{cases}$$

If $n > p^{2b} + p^b$, then \mathcal{Y}_n / L is not covered by \mathcal{H}_{n^3}

$$s \mid n^2 - n + 1, \quad M = \{(X, Y, Z, T) \mapsto (X, Y, \lambda Z, T) \mid \lambda^s = 1\} \leq \text{Aut}(\mathcal{Y}_n)$$

$$\mathcal{Y}_n / M : \begin{cases} Y^{n+1} = X^n + X \\ Z^{\frac{n^2-n+1}{s}} = Y^{n^2} - Y \end{cases}$$

If $n > s(s + 1)$, then \mathcal{Y}_n / M is not covered by \mathcal{H}_{n^3}
An equivalent form of \mathcal{Y}_n

Proposition

The GK-curve \mathcal{Y}_n is projectively equivalent over \mathbb{F}_{n^2} to the space curve

$$\mathcal{X} : \begin{cases} Z^{n^2-n+1} = Y \frac{X^{n^2} - X}{X^{n+1} - 1} \\ Y^{n+1} = X^{n+1} - 1 \end{cases}$$
An equivalent form of \mathcal{Y}_n

Proposition

The GK-curve \mathcal{Y}_n is projectively equivalent over \mathbb{F}_{n^2} to the space curve

$$\chi : \begin{cases} Z^{n^2-n+1} = Y \frac{X^{n^2}-X}{X^{n+1}-1} \\ Y^{n+1} = X^{n+1} - 1 \end{cases}$$

Hence $\text{Aut}(\mathcal{Y}_n) = A \cdot \text{Aut}(\chi) \cdot A^{-1}$, where

$$A = \begin{pmatrix} \rho & 0 & 0 & \rho^n \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \text{ with } \rho + \rho^n = 1.$$
A criterion for maximal curves

Proposition

Let \(a, c \in \mathbb{F}_q \), \(b \in \mathbb{F}_{q^2} \) with \(ac - b^{q+1} \neq 0 \). Let

\[
g(X) = aX^{q+1} + (b^q + b)X^q + bX + c
\]

and \(f(X) \in \mathbb{F}_{q^2}[X] \) a divisor of \(g(X) \) with \(\deg(f) \leq d \), where \(d \) is a divisor of \(q + 1 \). If

\[
f(X) \frac{q+1}{d} - 1 - \frac{g(X)}{f(X)}
\]

is the \(d \)-th power of a polynomial \(h(X) \in \mathbb{F}_{q^2}[X] \), then the curve with equations

\[
\begin{cases}
Z^{\frac{q+1}{d}} = Y h(X) \\
Y^d = f(X)
\end{cases}
\]

is \(\mathbb{F}_{q^2} \)-maximal.
A family of Galois subcovers of \(\mathcal{X} \)

\[
G = \left\{ (X, Y, Z, T) \mapsto (aX, bY, \lambda Z, T) \mid a^{n+1} = b^{n+1} = 1, \lambda^{n^2-n+1} = ab \right\}
\]
A family of Galois subcovers of \mathcal{X}

\[G = \left\{ (X, Y, Z, T) \mapsto (aX, bY, \lambda Z, T) \mid a^{n+1} = b^{n+1} = 1, \lambda^{n^2-n+1} = ab \right\} \]

\[L = \left\{ (X, Y, Z, T) \mapsto (\lambda^3 b^n X, bY, \lambda Z, T) \mid b^{n+1} = \lambda^{n+1} = 1 \right\} \leq G \]
A family of Galois subcovers of X

$G = \{(X, Y, Z, T) \mapsto (aX, bY, \lambda Z, T) \mid a^{n+1} = b^{n+1} = 1, \lambda^{n^2 - n + 1} = ab\}$

$L = \{(X, Y, Z, T) \mapsto (\lambda^3 b^n X, bY, \lambda Z, T) \mid b^{n+1} = \lambda^{n+1} = 1\} \leq G$

$[\mathbb{K}(x, y, z) : Fix(L)] = (n + 1)^2, \quad \mathbb{K}(x^{n+1}, y^{n+1}, z^{n+1}) \subseteq Fix(L),$

$[\mathbb{K}(x, y, z) : \mathbb{K}(x^{n+1}, y^{n+1}, z^{n+1})] \leq (n + 1)^2$

$\Longrightarrow Fix(L) = \mathbb{K}(x^{n+1}, y^{n+1}, z^{n+1})$
A family of Galois subcovers of \mathcal{X}

$$G = \left\{ (X, Y, Z, T) \mapsto (aX, bY, \lambda Z, T) \mid a^{n+1} = b^{n+1} = 1, \lambda^{n^2-n+1} = ab \right\}$$

$$L = \left\{ (X, Y, Z, T) \mapsto (\lambda^3 b^n X, bY, \lambda Z, T) \mid b^{n+1} = \lambda^{n+1} = 1 \right\} \leq G$$

$$[\mathbb{K}(x, y, z) : \text{Fix}(L)] = (n+1)^2, \quad \mathbb{K}(x^{n+1}, y^{n+1}, z^{n+1}) \subseteq \text{Fix}(L),$$

$$[\mathbb{K}(x, y, z) : \mathbb{K}(x^{n+1}, y^{n+1}, z^{n+1})] \leq (n+1)^2$$

$$\implies \text{Fix}(L) = \mathbb{K}(x^{n+1}, y^{n+1}, z^{n+1})$$

Define $u = x^{\frac{n+1}{d_1}}$, $v = y^{\frac{n+1}{d_2}}$, $w = z^{\frac{n+1}{d_3}}$, with d_1, d_2, d_3 divisors of $n+1$
A family of Galois subcovers of \mathcal{X}

$$G = \left\{ (X, Y, Z, T) \mapsto (aX, bY, \lambda Z, T) \mid a^{n+1} = b^{n+1} = 1, \lambda^{n^2-n+1} = ab \right\}$$

$$L = \left\{ (X, Y, Z, T) \mapsto (\lambda^3 b^n X, bY, \lambda Z, T) \mid b^{n+1} = \lambda^{n+1} = 1 \right\} \leq G$$

$$[\mathbb{K}(x, y, z) : \text{Fix}(L)] = (n+1)^2, \quad \mathbb{K}(x^{n+1}, y^{n+1}, z^{n+1}) \subseteq \text{Fix}(L),$$

$$[\mathbb{K}(x, y, z) : \mathbb{K}(x^{n+1}, y^{n+1}, z^{n+1})] \leq (n+1)^2$$

$$\implies \text{Fix}(L) = \mathbb{K}(x^{n+1}, y^{n+1}, z^{n+1})$$

Define $u = x^{\frac{n+1}{d_1}}, v = y^{\frac{n+1}{d_2}}, w = z^{\frac{n+1}{d_3}}$, with d_1, d_2, d_3 divisors of $n+1$

$\text{Fix}(L) \subseteq \mathbb{K}(u, v, w) \subseteq \mathbb{K}(x, y, z)$ and $\mathbb{K}(x, y, z)/\text{Fix}(L)$ is Galois
A family of Galois subcovers of \mathcal{X}

\[G = \{(X, Y, Z, T) \mapsto (aX, bY, \lambda Z, T) \mid a^{n+1} = b^{n+1} = 1, \lambda^{n^2-n+1} = ab\} \]

\[L = \{(X, Y, Z, T) \mapsto (\lambda^3 b^n X, bY, \lambda Z, T) \mid b^{n+1} = \lambda^{n+1} = 1\} \leq G \]

\[[\mathbb{K}(x, y, z) : \text{Fix}(L)] = (n+1)^2, \quad \mathbb{K}(x^{n+1}, y^{n+1}, z^{n+1}) \subseteq \text{Fix}(L), \]
\[[\mathbb{K}(x, y, z) : \mathbb{K}(x^{n+1}, y^{n+1}, z^{n+1})] \leq (n+1)^2 \]
\[\implies \text{Fix}(L) = \mathbb{K}(x^{n+1}, y^{n+1}, z^{n+1}) \]

Define $u = x^{\frac{n+1}{d_1}}, v = y^{\frac{n+1}{d_2}}, w = z^{\frac{n+1}{d_3}}$, with d_1, d_2, d_3 divisors of $n+1$

$\text{Fix}(L) \subseteq \mathbb{K}(u, v, w) \subseteq \mathbb{K}(x, y, z)$ and $\mathbb{K}(x, y, z)/\text{Fix}(L)$ is Galois

Then $\mathbb{K}(x, y, z)/\mathbb{K}(u, v, w)$ is Galois, $\mathbb{K}(u, v, w) = \text{Fix}(H)$ with $H \leq L$
A family of Galois subcovers of \mathcal{X}, II

$$v^{d_2} = u^{d_1} - 1, \quad w^{d_3(n^2-n+1)} = \alpha,$$

with

$$\alpha = u^{d_1} \left(u^{d_1} - 1 \right) \left(\frac{u^{d_1(n-1)} - 1}{u^{d_1} - 1} \right)^{n+1} \in \mathbb{K}(u, v)$$
A family of Galois subcovers of \mathcal{X}, II

\[v^{d_2} = u^{d_1} - 1, \quad w^{d_3(n^2-n+1)} = \alpha, \]

with \[\alpha = u^{d_1} \left(u^{d_1} - 1 \right) \left(\frac{u^{d_1(n-1)} - 1}{u^{d_1} - 1} \right)^{n+1} \in \mathbb{K}(u, v) \]

The greatest common divisor between $d_3(n^2 - n + 1)$ and the weights of places of $\mathbb{K}(u, v)$ in $\text{div}(\alpha)$ is

\[M = \text{gcd} \left(d_1, d_2, d_3(n^2 - n + 1) \right) \]
\[v^{d_2} = u^{d_1} - 1, \quad w^{d_3(n^2-n+1)} = \alpha, \]

with \[\alpha = u^{d_1} \left(u^{d_1} - 1 \right) \left(\frac{u^{d_1(n-1)} - 1}{u^{d_1} - 1} \right)^{n+1} \in \mathbb{K}(u, v) \]

The greatest common divisor between \(d_3(n^2 - n + 1) \) and the weights of places of \(\mathbb{K}(u, v) \) in \(\text{div}(\alpha) \) is

\[M = \gcd \left(d_1, d_2, d_3(n^2 - n + 1) \right) \]

If \(M = 1 \): irreducible equations of a double Kummer extension
A family of Galois subcovers of \(\mathcal{X} \), II

\[v^{d_2} = u^{d_1} - 1, \quad w^{d_3(n^2-n+1)} = \alpha, \]

with \[\alpha = u^{d_1}(u^{d_1} - 1) \left(\frac{u^{d_1(n-1)} - 1}{u^{d_1} - 1} \right)^{n+1} \in \mathbb{K}(u, v) \]

The greatest common divisor between \(d_3(n^2 - n + 1) \) and the weights of places of \(\mathbb{K}(u, v) \) in \(\text{div}(\alpha) \) is

\[M = \text{gcd} \left(d_1, d_2, d_3(n^2 - n + 1) \right) \]

If \(M = 1 \): irreducible equations of a double Kummer extension

For \(M \geq 1 \): factorize and get irreducible equations

\[\mathcal{X}/H : \begin{cases} W^{\frac{d_3(n^2-n+1)}{M}} = U^{\frac{d_1}{M}} V^{\frac{d_2}{M}} \left(\frac{U^{d_1(n-1)} - 1}{U^{d_1} - 1} \right)^{\frac{n+1}{M}} \\ V^{d_2} = U^{d_1} - 1 \end{cases} \]
A family of Galois subcovers of X: degree

\[
in \mathbb{K}(x, y, z) : \deg(x)_0 = [\mathbb{K}(x, y, z) : \mathbb{K}(x)] = n^3 + 1
\]

hence \[
[\mathbb{K}(x, y, z) : \mathbb{K}(u)] = \deg(x \frac{n+1}{d_1})_0 = \frac{n + 1}{d_1}(n^2 - n + 1)
\]

so \[
[\mathbb{K}(x, y, z) : \mathbb{K}(u, v)] = \frac{(n + 1)^2(n^2 - n + 1)}{d_1d_2}
\]
A family of Galois subcovers of \mathcal{X}: degree

\[
\text{in } \mathbb{K}(x, y, z) : \quad \deg(x)_0 = [\mathbb{K}(x, y, z) : \mathbb{K}(x)] = n^3 + 1
\]

hence \[[\mathbb{K}(x, y, z) : \mathbb{K}(u)] = \deg(x^{\frac{n+1}{d_1}})_0 = \frac{n + 1}{d_1}(n^2 - n + 1) \]

so \[[\mathbb{K}(x, y, z) : \mathbb{K}(u, v)] = \frac{(n + 1)^2(n^2 - n + 1)}{d_1 d_2} \]

Therefore \[|H| = [\mathbb{K}(x, y, z) : \mathbb{K}(u, v, w)] = \frac{[\mathbb{K}(x, y, z) : \mathbb{K}(u, v)]}{[\mathbb{K}(u, v, w) : \mathbb{K}(u, v)]} \]

\[= \frac{M(n + 1)^2}{d_1 d_2 d_3} \]
By starting from the values $d_1/M, d_2, d_3$, or from $d_1, d_2/M, d_3$, we get other equations for quotient curves:

$$
\begin{cases}
 W^{d_3(n^2-n+1)} = U^{d_1} \left(U^{d_1}(n-1) - 1 \right) \left(\frac{U^{d_1}(n-1)-1}{U^{d_1}-1} \right)^n, \\
 V^{d_2} = U^{d_1} - 1
\end{cases}
$$

$$
\begin{cases}
 W^{d_3(n^2-n+1)} = U^{d_1} \left(U^{d_1}(n-1) - 1 \right) \left(\frac{U^{d_1}(n-1)-1}{U^{d_1}-1} \right)^n, \\
 V^{d_2/M} = U^{d_1} - 1
\end{cases}
$$

of degree $\frac{(n+1)^2}{d_1 d_2 d_3}$ and $\frac{M(n+1)^2}{d_1 d_2 d_3}$, respectively.
By starting from the values $d_1/M, d_2, d_3$, or from $d_1, d_2/M, d_3$, we get other equations for quotient curves:

\[
\begin{align*}
W^{d_3(n^2-n+1)} &= U^{d_1/M} \left(U^{d_1/(n-1)} - 1 \right) \left(\frac{U^{d_1/(n-1)} - 1}{U^{d_1/M} - 1} \right)^n, \\
V^{d_2} &= U^{d_1} - 1
\end{align*}
\]

\[
\begin{align*}
W^{d_3(n^2-n+1)} &= U^{d_1} \left(U^{d_1/(n-1)} - 1 \right) \left(\frac{U^{d_1/(n-1)} - 1}{U^{d_1} - 1} \right)^n, \\
V^{d_2/M} &= U^{d_1} - 1
\end{align*}
\]

of degree $\frac{(n+1)^2}{d_1d_2d_3}$ and $\frac{M(n+1)^2}{d_1d_2d_3}$, respectively.

On the function fields of such curves consider the morphism

\[
(u : v : w^{n^2-n+1/e} : 1), \quad \text{with} \quad e \mid n^2 - n + 1.
\]

Then $K(u, v, s)$, where $s = w^{n^2-n+1/e}$, is the function field of new quotients.
A family of Galois subcovers of \mathcal{X}: equations

Theorem

$d_1, d_2, d_3 \mid n + 1, \ e \mid n^2 - n + 1, \ M = \gcd\left(d_1, d_2, d_3(n^2 - n + 1)\right)$. The following irreducible equations define \mathbb{F}_{n^6}-maximal space curves which are Galois subcovers of \mathcal{X}:

\[
C_1: \begin{cases}
S^{d_3} e = U^{d_1} V^{d_2} \left(\frac{U^{d_1(n-1)} - 1}{U^{d_1} - 1} \right)^{n+1} \\
V^{d_2} = U^{d_1} - 1
\end{cases}
\]

\[
C_2: \begin{cases}
S^{d_3} e = U^{d_1} \left(\frac{U^{d_1(n-1)} - 1}{U^{d_1} - 1} \right)^n \\
V^{d_2} = U^{d_1} - 1
\end{cases}
\]

\[
C_3: \begin{cases}
S^{d_3} e = U^{d_1} \left(\frac{U^{d_1(n-1)} - 1}{U^{d_1} - 1} \right)^n \\
V^{d_2} = U^{d_1} - 1
\end{cases}
\]
Plane models of C_1, C_2, and C_3 can be easily obtained for some values of d_1, d_2, and d_3 (for example, when one of them is 1)

When $\frac{(n^2-n+1)M(n+1)^2}{ed_1d_2d_3} = 1$, the curve C_1 provides a (possibly plane) model of the GK-curve
Plane models of C_1, C_2, and C_3 can be easily obtained for some values of d_1, d_2, and d_3 (for example, when one of them is 1)

When $\frac{(n^2-n+1)M(n+1)^2}{ed_1d_2d_3} = 1$, the curve C_1 provides a (possibly plane) model of the GK-curve

The genera of the curves C_i can be computed by applying Kummer theory to the extensions

$$\mathbb{K}(u, v)/\mathbb{K}(u), \quad \mathbb{K}(u, v)/\mathbb{K}(v), \quad \mathbb{K}(u, v, w)/\mathbb{K}(u, v)$$
Theorem

Let $e = n^2 - n + 1$. Then the genera of the curves C_1, C_2, and C_3 are

$$g(C_1) = 1 + \frac{1}{2} \left[d_1 d_2 \frac{d_3(n^2 - n + 1)}{M}(n - 1) - d_2 \left(\frac{d_1}{M}, \frac{d_3(n^2 - n + 1)}{M} \right) - d_1 \left(\frac{d_2}{M}, \frac{d_3(n^2 - n + 1)}{M} \right) +
- d_1 d_2 (n - 2) \left(\frac{d_3(n^2 - n + 1)}{M}, \frac{n + 1}{M} \right) - \left((d_1, d_2) \frac{d_3(n^2 - n + 1)}{M}, \frac{d_1 d_2 n(n - 1)}{M} \right) \right]$$

and, for $i = 2, 3$,

$$g(C_i) = 1 + \frac{1}{2} \left[hkr(n - 1) - k(h, r) - h(k, r) - hk(n - 2)(r, n + 1) - ((h, k)r, hkn(n - 1)) \right],$$

where $r = d_3(n^2 - n + 1)$, $h = \begin{cases} d_1/M & \text{for } C_2 \\ d_1 & \text{for } C_3 \end{cases}$, $k = \begin{cases} d_2/M & \text{for } C_2 \\ d_2 & \text{for } C_3 \end{cases}.$
Explicit description of $H \leq \text{Aut}(\mathcal{X})$, case 1

\[d_1 \mid d_3, \quad \text{gcd}(d_1, d_2) = 1 \]
Explicit description of $H \leq \text{Aut}(\mathcal{X})$, case 1

\[d_1 \mid d_3, \quad \gcd(d_1, d_2) = 1 \]

Then $C_i = \mathcal{X}/H$, where

\[H = \left\{ (X, Y, Z, T) \mapsto (\lambda^3 b^n X, bY, \lambda Z) \mid b^{\frac{n+1}{d_1 d_2}} = \lambda^\frac{n+1}{d_3} = 1 \right\} \]
Explicit description of $H \leq \text{Aut}(\mathcal{X})$, case 1

\[d_1 \mid d_3, \quad \gcd(d_1, d_2) = 1 \]

Then $\mathcal{C}_i = \mathcal{X}/H$, where

\[H = \left\{ (X, Y, Z, T) \mapsto (\lambda^3 b^n X, bY, \lambda Z) \mid b^{n+1} = \lambda^{\frac{n+1}{d_3}} = 1 \right\} \]

The genus g_H of \mathcal{X}/H can be computed also as

\[g_H = g_{\tilde{H}} + \frac{d_1 d_2 d_3 (n^3 - 2n^2 + (2 - m)n + m - 1)}{2}, \]

where $m = \gcd(3, (n + 1)/d_3)$ and

\[g_{\tilde{H}} = 1 + \frac{md_1 d_2 d_3}{2(n + 1)} \left(n + 1 - \frac{n + 1}{md_3} - \gcd\left(\frac{n + 1}{d_1 d_2}, \frac{n + 1}{md_3} \right) - \gcd\left(\frac{n + 1}{d_1 d_2}, \frac{2(n + 1)}{md_3} \right) \right) \]

is the genus of the quotient \mathcal{H}_n/\tilde{H}, where \tilde{H} is the projection of H on $\text{PGU}(3, n) = \text{Aut}(\mathcal{H}_n)$.
Explicit description of $H \leq \text{Aut}(\mathcal{X})$, case 2

\[d_1 \mid d_2, \quad \gcd(d_1, d_3(n^2 - n + 1)) = 1 \]

Then $C_i = \mathcal{X}/H$, where

\[H = \left\{ (X, Y, Z, T) \mapsto (\lambda^3 b^n X, b Y, \lambda Z) \mid b^{\frac{n+1}{d_2}} = \lambda^{\frac{n+1}{d_1 d_3}} = 1 \right\} \]

The genus g_H of \mathcal{X}/H can be computed also as

\[g_H = g_{\bar{H}} + \frac{d_1 d_2 d_3 (n^3 - 2n^2 + (2 - m)n + m - 1)}{2} \]

where $m = \gcd(3, (n + 1)/d_1 d_3)$ and

\[g_{\bar{H}} = 1 + \frac{md_1 d_2 d_3}{2(n + 1)} \left(n + 1 - \frac{n + 1}{md_1 d_3} - \gcd\left(\frac{n + 1}{d_2}, \frac{n + 1}{md_1 d_3} \right) - \gcd\left(\frac{n + 1}{d_2}, \frac{2(n + 1)}{md_1 d_3} \right) \right) \]

is the genus of the quotient \mathcal{H}_n/\bar{H}, where \bar{H} is the projection of H on $\text{PGU}(3, n) = \text{Aut}(\mathcal{H}_n)$.
Another family of Galois subcovers of \(\mathcal{X} \)

\[
c \mid n + 1, \quad d \mid n^2 - n + 1
\]

\[
K = \left\{ (X, Y, Z, T) \mapsto (b^{-1}X, bY, \lambda Z, T) \mid b^{\frac{n+1}{c}} = \lambda \frac{n^2-n+1}{d} = 1 \right\}
\]
Another family of Galois subcovers of \mathcal{X}

$$c \mid n+1, \quad d \mid n^2 - n + 1$$

$$K = \left\{ (X, Y, Z, T) \mapsto (b^{-1}X, bY, \lambda Z, T) \mid b^{\frac{n+1}{c}} = \lambda \frac{n^2-n+1}{d} = 1 \right\}$$

Morphism: $u = x^{\frac{n+1}{c}}, \quad v = xy, \quad w = z^{\frac{n^2-n+1}{d}}$

Then $v^{n+1} = u^{2c} - u^c, \quad w^d = \alpha$, \hspace{1cm} (1)

with $\alpha = v \frac{u^{c(n-1)} - 1}{u^c - 1} \in \mathbb{K}(u, v)$.

$Fix(K) = \mathbb{K}(u, v, w)$, and we find a simple zero of α in $\mathbb{K}(u, v)$, hence equations (1) are irreducible.
Another family of Galois subcovers of \mathcal{X}

$$c \mid n + 1, \quad d \mid n^2 - n + 1$$

$$K = \left\{ (X, Y, Z, T) \mapsto (b^{-1}X, bY, \lambda Z, T) \mid b^{n+1}c = \lambda^{n^2-n+1}d = 1 \right\}$$

Morphism: $u = x^{n+1}c$, $v = xy$, $w = z^{n^2-n+1}d$

Then $v^{n+1} = u^{2c} - u^c$, $w^d = \alpha,$ \hspace{1cm} (1)

with $\alpha = v \frac{u^{c(n-1)} - 1}{u^c - 1} \in \mathbb{K}(u, v)$.

$\text{Fix}(K) = \mathbb{K}(u, v, w)$, and we find a simple zero of α in $\mathbb{K}(u, v)$, hence equations (1) are irreducible.

Moreover, the genus of \mathcal{X}/K can be computed by the Riemann-Hurwitz formula on the covering $\mathcal{X} \to \mathcal{X}/K$.
Another family of Galois subcovers of \mathcal{X}

Theorem

The Galois subcover \mathcal{X}/K of \mathcal{X} has degree

$$|K| = \frac{n^3 + 1}{cd},$$

irreducible equations

$$\mathcal{X}/K : \begin{cases} W^d = V \frac{U^c(n-1)-1}{U^c - 1} \\ V^{n+1} = U^{2c} - U^c \end{cases},$$

and genus

$$g(\mathcal{X}/K) = 1 + \frac{c}{2} \left[(d - 1)n^2 + n - d - \gcd(2, (n + 1)/c) \right].$$
New equations of \mathbb{F}_{n^6}-maximal curves: the case $n = 5$

For $n = 5$, the previous results provide new equations for the following genera of \mathbb{F}_{5^6}-maximal curves:

$$37, 74, 109, 121, 148, 220, 242, 361, 442, 484, 724, 1450,$$
$$160, 233, 469, 478, 496, 737, 1477, 1486.$$
For $n = 5$, the previous results provide new equations for the following genera of \mathbb{F}_{5^6}-maximal curves:

$$37, 74, 109, 121, 148, 220, 242, 361, 442, 484, 724, 1450,$$

$$160, 233, 469, 478, 496, 737, 1477, 1486.$$

Up to our knowledge, the integers in the second row are new values in the spectrum of genera of \mathbb{F}_{5^6}-maximal curves.
Examples of \mathbb{F}_n^6-maximal curves not covered by \mathcal{H}_n^3

If \mathcal{Y} is \mathbb{F}_{q^2}-covered by \mathcal{H}_q with the morphism $\varphi : \mathcal{H}_q \to \mathcal{Y}$, then

\[
L_{\mathcal{H}_q, \mathcal{Y}} := \frac{|\mathbb{F}_{q^2}(\mathcal{H}_q)|}{|\mathbb{F}_{q^2}(\mathcal{Y})|} \leq \deg(\varphi) \leq \frac{2g(\mathcal{H}_q) - 2}{2g(\mathcal{Y}) - 2} =: U_{\mathcal{H}_q, \mathcal{Y}}
\]

If $\left\lceil L_{\mathcal{H}_q, \mathcal{Y}} \right\rceil > \left\lfloor U_{\mathcal{H}_q, \mathcal{Y}} \right\rfloor$, such covering cannot exist.
Examples of \mathbb{F}_{n^6}-maximal curves not covered by \mathcal{H}_{n^3}

If \mathcal{Y} is \mathbb{F}_{q^2}-covered by \mathcal{H}_q with the morphism $\varphi : \mathcal{H}_q \to \mathcal{Y}$, then

$$L_{\mathcal{H}_q, \mathcal{Y}} := \frac{|\mathbb{F}_{q^2}(\mathcal{H}_q)|}{|\mathbb{F}_{q^2}(\mathcal{Y})|} \leq \deg(\varphi) \leq \frac{2g(\mathcal{H}_q) - 2}{2g(\mathcal{Y}) - 2} =: U_{\mathcal{H}_q, \mathcal{Y}}$$

If $\left[L_{\mathcal{H}_q, \mathcal{Y}} \right] > \left[U_{\mathcal{H}_q, \mathcal{Y}} \right]$, such covering cannot exist

Table: New \mathbb{F}_{n^6}-maximal curves not covered by \mathcal{H}_{n^3}

<table>
<thead>
<tr>
<th>g</th>
<th>n</th>
<th>(d_1, d_2, d_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233416</td>
<td>17</td>
<td>(1,18,6), (2,9,6), (2,18,3), (2,18,6), (3,18,6), (6,9,6), (6,18,3), (6,18,6), (9,2,6), (9,6,6), (9,18,2), (9,18,6), (18,1,6), (18,2,3), (18,2,6), (18,3,6), (18,6,3), (18,6,6), (18,9,2), (18,9,6)</td>
</tr>
<tr>
<td>233398</td>
<td>17</td>
<td>(9,18,2)</td>
</tr>
<tr>
<td>1064701</td>
<td>23</td>
<td>(1,24,8), (8,3,8), (24,8,1), (24,1,8), (2,24,8), (3,8,8), (3,24,8), (4,24,8), (6,8,8), (6,24,8), (8,3,8), (8,6,8), (8,12,8), (8,24,1), (8,24,2)</td>
</tr>
<tr>
<td>1064689</td>
<td>23</td>
<td>(2,24,8), (4,24,8), (6,8,8), (6,24,8), (8,6,8), (8,12,8)</td>
</tr>
<tr>
<td>3206257</td>
<td>23</td>
<td>(2,24,24), (4,24,24), (6,24,24), (8,6,24), (8,12,24)</td>
</tr>
<tr>
<td>3402406</td>
<td>29</td>
<td>(30,10,1), (10,30,1), (10,15,2), (30,2,5), (10,6,5), (10,3,10)</td>
</tr>
<tr>
<td>5570731</td>
<td>32</td>
<td>(33,11,1), (11,33,1), (11,3,11)</td>
</tr>
</tbody>
</table>
A criterion for the degree of a covering

Remark

Let $\varphi : \mathcal{H}_q \to \mathcal{Y}$ be an \mathbb{F}_{q^2}-covering. If $g(\mathcal{Y}) > f(q)$, where

$$f(q) = \frac{\sqrt{q^5 + 2q^4 + q^3 + q^2 + 2q + 1} - q^2 - 1}{2q},$$

then $\deg(\varphi)$ is uniquely determined by

$$L_{\mathcal{H}_q, \mathcal{Y}} \leq \deg(\varphi) \leq U_{\mathcal{H}_q, \mathcal{Y}}.$$

In fact, the condition $g(\mathcal{Y}) > f(q)$ is equivalent to $U_{\mathcal{H}_q, \mathcal{Y}} - L_{\mathcal{H}_q, \mathcal{Y}} < 1$.
\(F_{n^6} \)-maximal curves not Galois-covered by \(\mathcal{H}_{n^3} \)

Proposition

Let \(n \geq 7 \), \(k \mid n + 1 \) with \(k < \sqrt{n + 1} + 1 \). Define \(d_1 = \frac{n + 1}{k} \), \(d_2 = 1 \), and \(d_3 = n + 1 \). Then the curve

\[
\mathcal{X}/\mathcal{H} : \quad \mathcal{W}^{n^3 + 1} = U^{\frac{n+1}{k}} \left(\frac{U^{n+1}}{k} - 1 \right) \left(\frac{U^{(n^2-1)/k} - 1}{U^{(n+1)/k} - 1} \right)^{n+1}
\]

is not Galois-covered by \(\mathcal{H}_{n^3} \).
Sketch of the proof:
Sketch of the proof:

- If $\mathcal{H}_{n^3} \to \mathcal{X}/H$ is an \mathbb{F}_{n^6}-covering, then it has degree kn.
Sketch of the proof:

- If $\mathcal{H}_{n^3} \to \mathcal{X}/H$ is an \mathbb{F}_{n^6}-covering, then it has degree kn.

- Suppose $\mathcal{X}/H \cong \mathcal{H}_{n^3}/G$ with $G \leq \text{Aut}(\mathcal{H}_{n^3})$, $|G| = kn$. Since $|G| < n^2$, then G fixes a point of $\mathcal{H}_{n^3}(\mathbb{F}_{n^6})$;
\(\mathbb{F}_{n^6} \)-maximal curves not Galois-covered by \(\mathcal{H}_{n^3} \)

Sketch of the proof:

- If \(\mathcal{H}_{n^3} \to \mathcal{X}/H \) is an \(\mathbb{F}_{n^6} \)-covering, then it has degree \(kn \).

- Suppose \(\mathcal{X}/H \cong \mathcal{H}_{n^3}/G \) with \(G \leq \text{Aut}(\mathcal{H}_{n^3}) \), \(|G| = kn \).
 Since \(|G| < n^2 \), then \(G \) fixes a point of \(\mathcal{H}_{n^3}(\mathbb{F}_{n^6}) \);

- A result of Garcia-Stichtenoth-Xing provides the genus \(g(\mathcal{H}_{n^3}/G) \), depending on certain numerical parameters.
 On the other hand, \(g(\mathcal{X}/H) \) is given by the formulas above.
\(\mathbb{F}_n^6 \)-maximal curves not Galois-covered by \(\mathcal{H}_{n^3} \)

Sketch of the proof:

- If \(\mathcal{H}_{n^3} \rightarrow \mathcal{X}/H \) is an \(\mathbb{F}_n^6 \)-covering, then it has degree \(kn \).

- Suppose \(\mathcal{X}/H \cong \mathcal{H}_{n^3}/G \) with \(G \leq \text{Aut}(\mathcal{H}_{n^3}) \), \(|G| = kn \).
 Since \(|G| < n^2 \), then \(G \) fixes a point of \(\mathcal{H}_{n^3}(\mathbb{F}_n^6) \);

- A result of Garcia-Stichtenoth-Xing provides the genus \(g(\mathcal{H}_{n^3}/G) \), depending on certain numerical parameters.
 On the other hand, \(g(\mathcal{X}/H) \) is given by the formulas above.

- The two values cannot coincide.
Proposition

Let $n > 7$, $k | n + 1$ with $k < \sqrt{n + 1} + 1$ and $3 \nmid (n + 1)/k$; if $3 | n + 1$, assume also $n > 23$.

Define $d_1 = (n + 1)/k$, $d_2 = n + 1$, and $d_3 = 1$.

Then the curve

$$
\mathcal{X}/\mathcal{H} : \begin{cases}
W^{n^2-n+1+1} = U^{n+1} \left(U^{\frac{n+1}{k}} - 1 \right) \left(\frac{U^{(n^2-1)/k-1}}{U^{(n+1)/k-1}} \right)^{n+1} \\
V^{n+1} = U^{\frac{n+1}{k}} - 1
\end{cases}
$$

is not Galois-covered by \mathcal{H}_{n^3}.
Proposition

\(n \) prime power, \(\gamma \mid n + 1, \delta \mid n^2 - n + 1, \)

define \(c = (n + 1)/\gamma \) and \(d = (n^2 - n + 1)/\delta. \)

Suppose that one of the following holds:

- \(n = 5, \gamma = 2, \) and \(\delta = 1; \)
- \(n \geq 7, \gamma \leq 2, \) and \(\delta \leq (\sqrt{2\gamma n + 1} - 1)/2; \)
- \(n \geq 7, \gamma > 2, \) and \(\gamma\delta(\gamma\delta - \delta - 1) < n. \)

Then the curve

\[
\begin{aligned}
W & \frac{n^2-n+1}{\delta} = V \frac{U(n^2-1)/\gamma - 1}{U(n+1)/\gamma - 1} \\
V^{n+1} = U^{2(n+1)/\gamma} - U^{(n+1)/\gamma}
\end{aligned}
\]

is not Galois-covered by \(\mathcal{H}_{n^3}. \)
Thank you for your attention